Author Archives: Leyla

Our Paper on “Distributed silicon nanoparticles”was accepted for publication in Optical Society of America.

Abstract

In this paper, a new architecture comprising silicon nanoparticles inside a hole transport layer laid on a thin silicon layer is proposed to develop ultrathin film solar cells. Using generalized Mie theory, a fast analytical approach is developed to evaluate the optical absorption of the proposed structure for various geometries, polarizations and angles of incidence. The analytical results are verified through comparison with full-wave simulations, illustrating a reasonable agreement. The electrical performance of a distributed silicon nanoparticle solar cell is determined for selected configurations. To be able to predict the light-trapping in a solar cell comprising randomly distributed nanospheres, a new technique based on probability theory is developed and validated through comparison with the simulation results. Both analytical and numerical results show that the excited Mie resonant modes in the proposed structure lead to a significant enhancement in both absorption and the photo-generated current, in comparison to a conventional silicon solar cell with an equivalent volume of the active layer. In the case of random distributions, other advantages, including the simple fabrication process, indicate that the cell is a promising structure for ultrathin photovoltaics.

link:

https://opg.optica.org/oe/fulltext.cfm?uri=oe-29-18-28037&id=457250

Our Paper on “Analysis of wave scattering from 2D curved metasurfaces”was accepted for publication in IET Microwaves, Antennas & Propagation.

Abstract

An efficient technique for calculating the scattering from curved metasurfaces using the extinction theorem in conjunction with the Floquet and Fourier series expansions is presented. Here, we treat the two-dimensional metasurfaces that have transversal polarizabilities with no variation along the y-axis. The boundary conditions at the metasurface are given by the generalized sheet transition conditions (GSTCs) whose susceptibilities are given in an arbitrary local coordinate system. First, we use the extinction theorem to provide integral equations of the scattering problem. The integral equations involve the Green’s functions, tangential electric and magnetic fields and their normal derivatives in regions above and below the metasurface. Then, we employ the Floquet theorem that gives us the analytical periodic Green’s functions of each region. Next, we employ the Fourier theorem to expand the tangential fields in terms of unknown Fourier coefficients. The GSTCs and the integral equations provide equations to be solved for the unknowns. The method can calculate scattering from both periodic and non-periodic metasurfaces. The technique is used to analyse different applied problems such as carpet cloaking, illusion, and radar echo width reduction. The method is fast and accurate and can efficiently treat metasurfaces with electrically large curved geometries with dimensions as large as 120 times the wavelength.

link:

https://ietresearch.onlinelibrary.wiley.com/doi/full/10.1049/mia2.12115

Our Paper on “Super-resolution far-field sub-wavelength imaging”was accepted for publication in Optical Society of America.

Abstract

Losing the information contained in evanescent waves scattered from an object limits the best achievable resolution in far-field optical imaging systems to about half of the wavelength. This limitation is known as the diffraction limit. In this paper, we propose a new holography-based far-field imaging technique to go beyond the diffraction limit and achieve super-resolution images. In the proposed method, after the recording process, multiple reconstruction processes with appropriate reconstruction waves are performed to extract information about sub-wavelength features of a target object encoded in the evanescent waves scattered from it. It is analytically proved that in the proposed method, by increasing the number of reconstruction steps, the resolution increases. The performance of the method is numerically validated. In numerical analysis, by performing two reconstruction steps, a resolution of 1/14 of the working wavelength is achieved. This resolution can be further improved by increasing the number of reconstruction steps.

link:

https://opg.optica.org/josab/abstract.cfm?uri=josab-38-3-670

Our Paper on “enhance the efficiency of solar cells”was accepted for publication in Optical Society of America.

Abstract
With the advances in the field of plasmonics, techniques for trapping and localizing light have become more feasible at the nanoscale. Several works have shown that plasmonics-based photovoltaic devices have yielded an improved absorption capability, enabling the design of thin-layered photovoltaic absorbers. In this review, we shed light on recent advances that employ plasmonics and nano-sized structures and thin-film technologies intended to increase solar cell efficiency. In this work, we provide an overview of the challenges associated with developing high-efficiency solar cells. Despite significant efforts by numerous groups to improve the efficiency of solar cells, practical realization of these concepts has yet to materialize. The conclusions made here hope to encourage researchers to re-examine the factors and challenges that could have created barriers to full realization of all concepts proposed over the past 15 years. In fact, because of the immense impact of improving the efficiency of solar cells on the environment and economy, it is hoped that this review encourages new technology paradigms that can be translated into commercially viable products.

link:

https://opg.optica.org/josab/abstract.cfm?uri=josab-38-2-638