Our Paper on “enhance the efficiency of solar cells”was accepted for publication in Optical Society of America.

With the advances in the field of plasmonics, techniques for trapping and localizing light have become more feasible at the nanoscale. Several works have shown that plasmonics-based photovoltaic devices have yielded an improved absorption capability, enabling the design of thin-layered photovoltaic absorbers. In this review, we shed light on recent advances that employ plasmonics and nano-sized structures and thin-film technologies intended to increase solar cell efficiency. In this work, we provide an overview of the challenges associated with developing high-efficiency solar cells. Despite significant efforts by numerous groups to improve the efficiency of solar cells, practical realization of these concepts has yet to materialize. The conclusions made here hope to encourage researchers to re-examine the factors and challenges that could have created barriers to full realization of all concepts proposed over the past 15 years. In fact, because of the immense impact of improving the efficiency of solar cells on the environment and economy, it is hoped that this review encourages new technology paradigms that can be translated into commercially viable products.